Tag標簽
  • 美國離體多光子顯微鏡代理
    美國離體多光子顯微鏡代理

    現代分子生物學技術的迅速發展和科技的進步,特別是隨著后基因組時代的到來,人們已經能夠根據需要建立各種細胞模型,為在體研究基因表達規律、分子間的相互作用、細胞的增殖、細胞信號轉導、誘導分化、細胞凋亡以及新的血管生成等提供了良好的生物學條件。然而,盡管人們利用現有的分子生物學方法,已經對基因表達和蛋白質之間的相互作用進行了深入、細致的研究,但仍然不能實現對蛋白質和基因活動的實時、動態監測。在細胞的生理過程中,基因、尤其是蛋白質的表達、修飾和相萬作用往往發生可逆的、動態的變化。目前的分子生物學方法還不能捕獲到蛋白質和基因的這些變化,但獲取這些信息對與研究基因的表達和蛋白質之間的相互作用又至關重要。因...

  • 布魯克多光子顯微鏡峰值功率密度
    布魯克多光子顯微鏡峰值功率密度

    首代小型化雙光子顯微鏡在國際上獲得小鼠自由行為過程中大腦神經元和突觸的動態圖像后,我們成功研制了第二代小型化雙光子顯微鏡。它具有更大的成像視野和三維成像能力,可以清晰穩定地對自由活動小鼠三維腦區的數千個神經元進行成像,實現對同一批神經元的一個月追蹤記錄。通過對微光學系統的重新設計系統的。微物鏡工作距離延長至1mm,實現無創成像。內嵌可拆卸的快速軸向掃描模塊,可采集深度180微米的3D體成像和多平面快速切換的實時成像。該掃描模塊由一個快速的電動變焦透鏡和一對中繼透鏡組成,在不同深度成像時可保持放大倍率恒定。其變焦模塊重量,研究人員可根據實驗需求自由拆卸。此外,新版微型化成像探頭可整體即時拔插,極...

  • 美國清醒動物多光子顯微鏡實驗
    美國清醒動物多光子顯微鏡實驗

    Ca2+是重要的第二信使,對于調節細胞的生理反應具有極其重要的作用,開發和利用雙光子熒光顯微成像技術對Ca2+熒光信號進行觀測,可以從某些方面對有機體或細胞的變化機制進行分析,具有重要的意義。利用雙光子熒光顯微成像技術可以觀察細胞內用熒光探針標記的Ca2*的時間和空間的熒光圖像的變化,還可以觀察細胞某一層面或局部的(Ca2+)熒光圖像和變化。通過對單細胞的研究發現,Ca2+不僅在細胞局部區域間的分布是不均勻的,而且細胞內各局部區域的不同深度或層次間也存在不同程度的Ca2+梯差即所謂的空間Ca2梯差。多光子顯微鏡在臨床前評價IA形態、細胞外基質、細胞密度和血管形成等方面顯示出強大的作用。美國清醒...

  • 美國進口多光子顯微鏡代理商
    美國進口多光子顯微鏡代理商

    2020年,TonmoyChakraborty等人提出了加速2PM軸向掃描速度的方法[2]。在光學顯微鏡中,物鏡或樣品緩慢的軸向掃描速度限制了體成像的速度。近年來,通過使用遠程聚焦技術或電調諧透鏡(ETL)已經實現了快速軸向掃描。但遠程對焦時對反射鏡的機械驅動會限制軸向掃描速度,ETL會引入球差和高階像差,無法進行高分辨率成像。為了克服這些限制,該小組引入了一種新的光學設計,可以將橫向掃描轉換為無球面像差的軸向掃描,以實現高分辨率成像。有兩種方法可以實現這種設計。***個可以執行離散的軸向掃描,另一個可以執行連續的軸向掃描。如圖3a所示,特定裝置由兩個垂直臂組成,每個臂具有4F望遠鏡和物鏡。遠...

  • 美國靈長類多光子顯微鏡多光子激發
    美國靈長類多光子顯微鏡多光子激發

    現代分子生物學技術的迅速發展和科技的進步,特別是隨著后基因組時代的到來,人們已經能夠根據需要建立各種細胞模型,為在體研究基因表達規律、分子間的相互作用、細胞的增殖、細胞信號轉導、誘導分化、細胞凋亡以及新的血管生成等提供了良好的生物學條件。然而,盡管人們利用現有的分子生物學方法,已經對基因表達和蛋白質之間的相互作用進行了深入、細致的研究,但仍然不能實現對蛋白質和基因活動的實時、動態監測。在細胞的生理過程中,基因、尤其是蛋白質的表達、修飾和相萬作用往往發生可逆的、動態的變化。目前的分子生物學方法還不能捕獲到蛋白質和基因的這些變化,但獲取這些信息對與研究基因的表達和蛋白質之間的相互作用又至關重要。因...

  • 美國bruker多光子顯微鏡研究
    美國bruker多光子顯微鏡研究

    使用基因編碼的熒光探針可以在突觸和細胞分辨率下監測體內神經元信號,這是揭示動物神經活動復雜機制的關鍵。使用雙光子顯微鏡(2PM)可以以亞細胞分辨率對鈣離子傳感器和谷氨酸傳感器成像,從而測量不透明大腦深處的活動;成像膜電壓變化能直接反映神經元活動,但神經元活動的速度對于常規的2PM來說太快。目前電壓成像主要通過寬場顯微鏡實現,但它的空間分辨率較差并且于淺層深度。因此要在不透明的大腦中以高空間分辨率對膜電壓變化進行成像,需要明顯提高2PM的成像速率。OCT可以用于損傷修復監測。Yeh等用OCT、多光子顯微鏡。美國bruker多光子顯微鏡研究SternandJeanMarx在評論中說:祖家能夠在更為...

  • 模塊化多光子顯微鏡供應商
    模塊化多光子顯微鏡供應商

    雙光子顯微鏡工作原理是將超快的紅外激光脈沖傳輸到樣品中,在樣品中與組織或熒光標記相互作用,這些組織或熒光標記發出用于創建圖像的信號。雙光子顯微鏡被多用于生物學研究,因為它能夠產生高分辨率的3-D圖像,深度達1毫米。然而,這些優點帶來了有限的成像速度,因為微光條件需要逐點圖像采集和重建的點檢測器。為了加快成像速度,科學家之前開發了一種多焦點激光照明方法,該方法使用數字微鏡設備(DMD),這是一種通常用于投影儀的低成本光掃描儀。此前人們認為這些DMD不能與超快激光一起工作。然而現在解決了這個問題,這使得DMD在超快激光應用中得以應用,這些應用包括光束整形、脈沖整形、快速掃描和雙光子成像。DMD在樣...

  • 嚙齒類多光子顯微鏡系統
    嚙齒類多光子顯微鏡系統

    1,光源、光路高度整合通過精密的設計,將飛秒激光器、掃描振鏡、PMT、濾光片組,甚至是單光子熒光光路全套整合在一個不大的掃描頭內,無論掃描頭如何移動,掃描頭內的光路都可以保持穩定不變,從而實現了超穩定、免維護的特點。2,配合多維度、高精度機械控制系統。掃描頭直接架設在一個多維運動的機械裝置上,可沿任意方向和角度移動掃描頭,方便對動物樣本進行多方位的掃描觀察。而這在常規方案的多光子顯微鏡上有很大的實現難度,不但需要多個關節組合的光路導向機構,并且在這些關節旋轉的時候,都冒著極大的光路偏移的風險,以至于在使用一段時間后都需要對光路進行再次校準,而這樣的問題在我司上則完全不會發生。3.一機多能。多光...

  • 熒光多光子顯微鏡價格多少
    熒光多光子顯微鏡價格多少

    使用基因編碼的熒光探針可以在突觸和細胞分辨率下監測體內神經元信號,這是揭示動物神經活動復雜機制的關鍵。使用雙光子顯微鏡(2PM)可以以亞細胞分辨率對鈣離子傳感器和谷氨酸傳感器成像,從而測量不透明大腦深處的活動;成像膜電壓變化能直接反映神經元活動,但神經元活動的速度對于常規的2PM來說太快。目前電壓成像主要通過寬場顯微鏡實現,但它的空間分辨率較差并且于淺層深度。因此要在不透明的大腦中以高空間分辨率對膜電壓變化進行成像,需要明顯提高2PM的成像速率。多光子顯微鏡銷售渠道分析及建議。熒光多光子顯微鏡價格多少通過添加FACED模塊,可以將基于標準振鏡的現有2PM輕松轉換為千赫茲成像系統。FACED雙光...

  • bruker多光子顯微鏡多光子激發
    bruker多光子顯微鏡多光子激發

    快速光柵掃描有多種實現方式,使用振鏡進行快速2D掃描,將振鏡和可調電動透鏡結合在一起進行快速3D掃描,但可調電動透鏡由于機械慣性的限制在軸向無法快速進行焦點切換,影響成像速度,現可使用空間光調制器(SLM)代替。遠程聚焦也是一種實現3D成像的手段,如圖2所示。在LSU模塊中,掃描振鏡進行橫向掃描,ASU模塊包括物鏡L1和反射鏡M,通過調控M的位置實現軸向掃描。該技術不僅可以校正主物鏡L2引入的光學像差,還可以進行快速的軸向掃描。想要獲得更多神經元成像,可以通過調整顯微鏡的物鏡設計來擴大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無法快速移動以進行快速軸向掃描,因此大型FOV系統依賴于遠...

  • 在體多光子顯微鏡數據分析
    在體多光子顯微鏡數據分析

    多光子顯微鏡對成像深度的改善利用紅光或紅外光激發,光散射小(小粒子的散射與波長的四次方的成反比)。不需要***,能更多收集來自成像截面的散射光子。***不能區分由離焦區域或焦點區發射出的散射光子,多光子在深層成像信噪比好。單光子激發所用的紫外或可見光在光束到達焦平面之前易被樣品吸收而衰減,不易對深層激發。多光子熒光成像的特點。深度成像∶與共聚焦相比能更好地對厚散射物質成像。信噪比∶多光子吸收采用的波長是單光子吸收的2倍以上,所以顯微試樣中的瑞利散射更小,熒光測定的信噪比更高。觀察活細胞∶離子測量(i.e.Ca2+),GFP,發育生物學等—減少了光毒性和光漂白,能對細胞長時間觀察。生產和消費的角...

  • 美國靈長類多光子顯微鏡Ultima Investigator
    美國靈長類多光子顯微鏡Ultima Investigator

    多光子激光掃描顯微鏡行業發展,世界多光子激光掃描顯微鏡產業主要布局在德國和日本,德國是以徠卡顯微系統和蔡司為,而日本以尼康和奧林巴斯公司為,2020年,上述企業占據著世界多光子激光掃描顯微鏡市場64.44%的市場份額,其發展戰略左右著多光子激光掃描顯微鏡市場的走向。目前世界市場對多光子激光掃描顯微鏡的需求在增長,中國市場這方面的需求增長更快,未來五年多光子激光掃描顯微鏡市場的發展在中國將具有很大的發展潛力。多光子顯微鏡的發展現狀及未來發展趨勢。美國靈長類多光子顯微鏡Ultima Investigator因斯蔻浦(上海)生物科技有限公司雙光子顯微鏡的基本原理是:在高光子密度的情況下,熒光分子可以...

  • 美國清醒動物多光子顯微鏡多光子激發
    美國清醒動物多光子顯微鏡多光子激發

    單光子激發熒光和雙光子激發熒光,是從熒光產生的機理上來區分的。而共焦則是熒光顯微鏡的一種結構,其目的是為了,通過共焦結構,提高整個熒光顯微鏡的空間分辨率。所以共焦熒光顯微鏡可以根據激發光源的不同,實現單光子共焦熒光成像或者雙光子共焦熒光成像。往往一個普通的雙光子熒光顯微鏡(沒有共焦結構)其空間分辨率也可以達到單光子共焦熒光顯微鏡的水平。這樣就可以簡化整個系統,相對來說,就提高了激發光源的利用率,以及熒光的探測效率,這個也是我們提倡雙光子熒光成像的原因之一。雙光子熒光共焦顯微鏡由于雙光子效應和共焦結構,分辨率則會更高,而我們通常說的共焦顯微鏡都是指單光子激發熒光的。生產和消費的角度分析多光子顯微...

  • 美國激光掃描多光子顯微鏡實驗操作
    美國激光掃描多光子顯微鏡實驗操作

    基于多光子顯微鏡的神經成像技術原理:多光子顯微鏡可用于深度成像和三維成像,因此可用于拍攝不透明的厚樣品。目前主要使用的多光子顯微鏡包括雙光子顯微鏡和三光子顯微鏡。雙光子顯微鏡的結構與共焦類似,區別在于:1)雙光子顯微鏡的激發光波長比共焦長,能量較低,但穿透能力較強;2)雙光子顯微鏡沒有小孔,提高了檢測效率;3)雙光子顯微鏡成像深度較快提高。那么,為什么雙光子能具有共焦顯微鏡所沒有的優勢呢?原因是它采用雙光子激發方式。使用波長較長的激發光子,光子的能量較低,因此電子需要吸收兩個這樣的激發光子才能達到激發態,從而釋放出一個熒光光子。因此,熒光信號的強度與光強的平方成正比。因為焦點處的光強較大,只能...

  • 美國清醒動物多光子顯微鏡系統
    美國清醒動物多光子顯微鏡系統

    細胞在受到外界刺激時,隨著刺激時間的增長,即使刺激繼續存在,Ca2+熒光信號不但不會繼續增強,反而會減弱,直至恢復到未加刺激物時的水平。對于細胞受精過程中Ca2+熒光信號的變化情況,研究發現,配了在粘著過程中,Ca2+熒光信號未發生任何變化,而配子之間發生融合作用時,Ca2+熒光信號強度卻會出現一個不穩定的峰值,并可持續幾分鐘。這些現象,對研究受精發育的早期信號及Ca2+在卵細胞和受精卵的發育過程中的作用具有重要的意義。在其它一些生理過程如細胞分裂、胞吐作用等等,Ca2+熒光信號強度也會發生很強的變化。多光子顯微鏡是衡量一個國家制造業和高科技發展水平的重要標準之一。美國清醒動物多光子顯微鏡系統...

  • 美國清醒動物多光子顯微鏡技術
    美國清醒動物多光子顯微鏡技術

    對于雙光子成像而言,離焦和近表面熒光激發是兩個比較大的深度限制因素,而對于三光子(3P)成像這兩個問題大大減小,但是三光子成像由于熒光團的吸收截面比2P要小得多,所以需要更高數量級的脈沖能量才能獲得與2P激發的相同強度的熒光信號。功能性3P顯微鏡比結構性3P顯微鏡的要求更高,它需要更快速的掃描,以便及時采樣神經元活動;需要更高的脈沖能量,以便在每個像素停留時間內收集足夠的信號。復雜的行為通常涉及到大型的大腦神經網絡,該網絡既具有局部的連接又具有遠程的連接。要想將神經元活動與行為聯系起來,需要同時監控非常龐大且分布普遍的神經元的活動,大腦中的神經網絡會在幾十毫秒內處理傳入的刺激,要想了解這種快速...

  • 美國bruker多光子顯微鏡成像區域
    美國bruker多光子顯微鏡成像區域

    多光子激發的特點。激發波長∶兩個或多個光子同時激發,激發波長是單光子激發波長的兩倍或多倍(i.e.紅光能激發UV探針)。多光子激發∶依賴于多個光子同時到達的時間。使用脈沖飛秒激光器(i.e.10-16seconds),且能提供更高的峰值功率。熒光限制在焦點處,能滿足多個光子同時達到產生多光子吸收。熒光強度正比于(激光強度)n。為什么使用飛秒激光器?多光子激發需要超快的激光器,皮秒脈沖不能實現三光子激發。深度成像需要更高、更窄脈沖輸出功率。多光子激發光源處于近紅外區,對細胞毒性和光漂白更小。OCT可以用于損傷修復監測。Yeh等用OCT、多光子顯微鏡。美國bruker多光子顯微鏡成像區域對于兩個遠...

  • 美國離體多光子顯微鏡Ultima 2P Plus
    美國離體多光子顯微鏡Ultima 2P Plus

    從應用的行業來看,多光子激光掃描顯微鏡主要集中于機構、學校及醫院對生物科學的研究。與此同時,光學玻璃、液晶材料、濾光片、電子元器件等光學材料則組成了上行業。處于中游的多光子激光掃描顯微鏡行業正是受到上下**業的共同影響,才會呈現出目前的市場態勢。2020年,全球多光子激光掃描顯微鏡市場規模達到了,預計2027年將達到,年復合增長率(CAGR)為(2021-2027)。中國市場規模增長快速,2020年,中國多光子激光掃描顯微鏡市場收入達到了,預計2027年將達到,年復合增長率(CAGR)為(2021-2027)。本報告研究“十三五”期間全球及中國市場多光子激光掃描顯微鏡的供給和需求情況,以及“十...

  • Ultima 2P Plus多光子顯微鏡技術
    Ultima 2P Plus多光子顯微鏡技術

    對于兩個遠距離(相距1-2mm以上)的成像部位,通常采用兩個**的路徑進行成像;對于相鄰區域,通常使用單個物鏡的多個光束進行成像。多光束掃描技術必須特別注意激發光束之間的串擾,這可以通過事后光源分離或時空復用來解決。事后光源分離法是指分離光束以消除串擾的算法;時空復用法是指同時使用多個激發光束,每個光束的脈沖在時間上被延遲,使不同光束激發的單個熒光信號可以暫時分離。引入的光束越多,可以成像的神經元越多,但多束會導致熒光衰減時間重疊增加,從而限制了分辨信號源的能力;并且復用對電子設備的工作速度要求很高;大量的光束也需要較高的激光功率來維持單束的信噪比,這樣容易導致組織損傷。中國市場多光子顯微鏡產...

  • 離體多光子顯微鏡實驗
    離體多光子顯微鏡實驗

    多光子顯微鏡因擁有較深的成像深度,和較高的對比度在生物成像中有著重要的意義,但是它通常需要較高的功率。結合時間上展開的超短脈沖可以實現超快的掃描速度和較深的成像深度,但是其本身所利用的近紅外波段的光會導致分辨率較低。清華大學陳宏偉教授和北京大學席鵬研究員合作研究,結合了結構光成像和上轉化粒子,開發了一種基于多光子上轉化材料和時間編碼結構光顯微鏡的高速超分辨成像系統(MUTE-SIM)。它可以實現50MHz的超高的掃描速度,并突破了衍射極限,實現了超分辨成像。相較于普通的熒光顯微鏡,該顯微鏡提升了,并且只需要較低的激發功率。這種超快、低功率、多光子的超分辨技術,在分辨率高的生物深層組織成像上有著...

  • 在體多光子顯微鏡層析成像
    在體多光子顯微鏡層析成像

    多光子顯微鏡成像深度深、對比度高,在生物成像中具有重要意義,但通常需要較高的功率。結合時間傳播的超短脈沖可以實現超快的掃描速度和較深的成像深度,但近紅外波段的光本身會導致分辨率較低。基于多光子上轉換材料和時間編碼結構光顯微鏡的高速超分辨成像系統(MUTE-SIM)是由清華大學教授和北京大學彭研究員合作開發的。可實現50MHz的超高掃描速度,突破衍射極限,實現超分辨率成像。與普通熒光顯微鏡相比,該顯微鏡經過改進,只需要較低的激發功率。這種超快、低功耗、多光子超分辨率技術在高分辨率生物深層組織成像中具有長遠的應用前景。多光子顯微鏡的發展現狀及未來發展趨勢。在體多光子顯微鏡層析成像雙光子熒光顯微成像...

  • 布魯克多光子顯微鏡
    布魯克多光子顯微鏡

    多束掃描技術可以同時對神經元組織的不同位置進行成像對兩個遠距離(相距大于1-2mm)的成像部位,通常使用兩條單獨的路徑進行成像;對于相鄰區域,通常使用單個物鏡的多光束進行成像。多光束掃描技術必須特別注意激發光束之間的串擾問題,這個問題可以通過事后光源分離方法或時空復用方法來解決。事后光源分離方法指的是用算法來分離光束消除串擾;時空復用方法指的是同時使用多個激發光束,每個光束的脈沖在時間上延遲,這樣就可以暫時分離被不同光束激發的單個熒光信號。引入越多路光束就可以對越多的神經元進行成像,但是多路光束會導致熒光衰減時間的重疊增加,從而限制了區分信號源的能力;并且多路復用對電子設備的工作速率有很高的要...

  • 美國共聚焦多光子顯微鏡準確定位
    美國共聚焦多光子顯微鏡準確定位

    快速光柵掃描有多種實現方式,使用振鏡進行快速2D掃描,將振鏡和可調電動透鏡結合在一起進行快速3D掃描,但可調電動透鏡由于機械慣性的限制在軸向無法快速進行焦點切換,影響成像速度,現可使用空間光調制器(SLM)代替。遠程聚焦也是一種實現3D成像的手段,如圖2所示。在LSU模塊中,掃描振鏡進行橫向掃描,ASU模塊包括物鏡L1和反射鏡M,通過調控M的位置實現軸向掃描。該技術不僅可以校正主物鏡L2引入的光學像差,還可以進行快速的軸向掃描。想要獲得更多神經元成像,可以通過調整顯微鏡的物鏡設計來擴大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無法快速移動以進行快速軸向掃描,因此大型FOV系統依賴于遠...

  • 模塊化多光子顯微鏡價格多少
    模塊化多光子顯微鏡價格多少

    多光子激光掃描顯微鏡行業發展,世界多光子激光掃描顯微鏡產業主要布局在德國和日本,德國是以徠卡顯微系統和蔡司為,而日本以尼康和奧林巴斯公司為,2020年,上述企業占據著世界多光子激光掃描顯微鏡市場64.44%的市場份額,其發展戰略左右著多光子激光掃描顯微鏡市場的走向。目前世界市場對多光子激光掃描顯微鏡的需求在增長,中國市場這方面的需求增長更快,未來五年多光子激光掃描顯微鏡市場的發展在中國將具有很大的發展潛力。多光子顯微鏡在臨床前評價IA形態、細胞外基質、細胞密度和血管形成等方面顯示出強大的作用。模塊化多光子顯微鏡價格多少對于雙光子成像而言,離焦和近表面熒光激發是兩個比較大的深度限制因素,而對于三...

  • 在體多光子顯微鏡作用
    在體多光子顯微鏡作用

    雙光子顯微鏡工作原理是將超快的紅外激光脈沖傳輸到樣品中,在樣品中與組織或熒光標記相互作用,這些組織或熒光標記發出用于創建圖像的信號。雙光子顯微鏡被多用于生物學研究,因為它能夠產生高分辨率的3-D圖像,深度達1毫米。然而,這些優點帶來了有限的成像速度,因為微光條件需要逐點圖像采集和重建的點檢測器。為了加快成像速度,科學家之前開發了一種多焦點激光照明方法,該方法使用數字微鏡設備(DMD),這是一種通常用于投影儀的低成本光掃描儀。此前人們認為這些DMD不能與超快激光一起工作。然而現在解決了這個問題,這使得DMD在超快激光應用中得以應用,這些應用包括光束整形、脈沖整形、快速掃描和雙光子成像。DMD在樣...

  • 模塊化多光子顯微鏡數據處理
    模塊化多光子顯微鏡數據處理

    快速光柵掃描有多種實現方式,使用振鏡進行快速2D掃描,將振鏡和可調電動透鏡結合在一起進行快速3D掃描,但可調電動透鏡由于機械慣性的限制在軸向無法快速進行焦點切換,影響成像速度,現可使用空間光調制器(SLM)代替。遠程聚焦也是一種實現3D成像的手段,如圖2所示。在LSU模塊中,掃描振鏡進行橫向掃描,ASU模塊包括物鏡L1和反射鏡M,通過調控M的位置實現軸向掃描。該技術不僅可以校正主物鏡L2引入的光學像差,還可以進行快速的軸向掃描。想要獲得更多神經元成像,可以通過調整顯微鏡的物鏡設計來擴大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無法快速移動以進行快速軸向掃描,因此大型FOV系統需要依賴...

  • 進口多光子顯微鏡多光子激發
    進口多光子顯微鏡多光子激發

    隨著現代分子生物學技術的快速發展和科學技術的進步,特別是后基因組時代的到來,人們已經能夠根據需要建立各種細胞模型,這為在體內研究基因表達、分子間相互作用、細胞增殖、細胞信號轉導、誘導分化、細胞凋亡和新生血管生成提供了良好的生物學條件。然而,盡管利用現有的分子生物學方法對基因表達與蛋白質的相互作用進行了深入細致的研究,但仍然無法實現對蛋白質和基因活性的實時動態監測。在細胞的生理過程中,基因尤其是蛋白質的表達、修飾和相互作用往往是可逆的、動態變化的。目前,分子生物學方法無法捕捉到蛋白質和基因的這些變化,但獲得這些信息對于研究基因表達與蛋白質的相互作用非常重要。因此,有必要發展一種動態、實時、連續監...

  • 美國嚙齒類多光子顯微鏡成像精度
    美國嚙齒類多光子顯微鏡成像精度

    與傳統的單光子寬視野熒光顯微鏡相比,多光子顯微鏡(MPM)具有光學切片和深層成像等功能,這兩個優勢極大地促進了研究者們對于完整大腦深處神經的了解與認識。2019年,JeromeLecoq等人從大腦深處的神經元成像、大量神經元成像、高速神經元成像這三個方面論述了相關的MPM技術[1]。想要將神經元活動與復雜行為聯系起來,通常需要對大腦皮質深層的神經元進行成像,這就要求MPM具有深層成像的能力。激發和發射光會被生物組織高度散射和吸收是限制MPM成像深度的主要因素,雖然可以通過增加激光強度來解決散射問題,但這會帶來其他問題,例如燒壞樣品、離焦和近表面熒光激發。增加MPM成像深度比較好的方法是用更長的...

  • 高速高分辨率多光子顯微鏡配置
    高速高分辨率多光子顯微鏡配置

    隨著生物分子光學標記技術的不斷進步,光學技術在揭示生命活動基本規律的研究中正發揮越來越重要的作用,也為醫學診療提供了更多、更有效的手段。生物醫學光學是近年來受到國際光學界和生物醫學界關注的研究熱點,在生物活檢、光動力、細胞結構與功能檢測、基因表達規律的在體研究等問題上取得了一系列研究成果,目前正在從宏觀到微觀上對大腦活動與功能進行多層面的研究。細胞重大生命活動(包括細胞增殖、分化、凋亡及信號轉導)的發生和調節是通過生物大分子間(如蛋白質-蛋白質、蛋白質-核酸等)相互作用來實現的。蛋白質作為基因調控的產物,與細胞和機體生理過程代謝直接相關,深入研究基因表達及蛋白質-蛋白質相互作用不僅能揭示生命活...

  • 熒光多光子顯微鏡Ultima Investigator
    熒光多光子顯微鏡Ultima Investigator

    快速光柵掃描有多種實現方式,使用振鏡進行快速2D掃描,將振鏡和可調電動透鏡結合在一起進行快速3D掃描,但可調電動透鏡由于機械慣性的限制在軸向無法快速進行焦點切換,影響成像速度,現可使用空間光調制器(SLM)代替。遠程聚焦也是一種實現3D成像的手段。在LSU模塊中,掃描振鏡進行橫向掃描,ASU模塊包括物鏡L1和反射鏡M,通過調控M的位置實現軸向掃描。該技術不僅可以校正主物鏡L2引入的光學像差,還可以進行快速的軸向掃描。想要獲得更多神經元成像,可以通過調整顯微鏡的物鏡設計來擴大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無法快速移動以進行快速軸向掃描,因此大型FOV系統依賴于遠程聚焦、SL...

1 2 3 4 5 6 7 8 ... 22 23
99国产精品一区二区,欧美日韩精品区一区二区,中文字幕v亚洲日本在线电影,欧美日韩国产三级片
日韩一区二区精品视频在线观看 | 亚洲色一色l噜一噜噜噜 | 日本免费精东视频 | 亚洲中文字幕精品视频不卡视频 | 亚洲国产综合精品二区 | 综合亚洲欧美日韩一区二区 |