細胞在受到外界刺激時,隨著刺激時間的增長,即使刺激繼續存在,Ca2+熒光信號不但不會繼續增強,反而會減弱,直至恢復到未加刺激物時的水平。對于細胞受精過程中Ca2+熒光信號的變化情況,研究發現,配了在粘著過程中,Ca2+熒光信號未發生任何變化,而配子之間發生融合作用時,Ca2+熒光信號強度卻會出現一個不穩定的峰值,并可持續幾分鐘。這些現象,對研究受精發育的早期信號及Ca2+在卵細胞和受精卵的發育過程中的作用具有重要的意義。在其它一些生理過程如細胞分裂、胞吐作用等,Ca2+熒光信號強度也會發生很強的變化。滔博生物多光子顯微鏡廣應用于生命科學、生物醫學和材料科學領域!美國飛秒激光多光子顯微鏡成像精度
Ca2+是重要的第二信使,對于調節細胞的生理反應具有極其重要的作用,開發和利用雙光子熒光顯微成像技術對Ca2+熒光信號進行觀測,可以從某些方面對有機體或細胞的變化機制進行分析,具有重要的意義。利用雙光子熒光顯微成像技術可以觀察細胞內用熒光探針標記的Ca2*的時間和空間的熒光圖像的變化,還可以觀察細胞某一層面或局部的(Ca2+)熒光圖像和變化。通過對單細胞的研究發現,Ca2+不僅在細胞局部區域間的分布是不均勻的,而且細胞內各局部區域的不同深度或層次間也存在不同程度的Ca2+梯差即所謂的空間Ca2梯差。在體多光子顯微鏡三維分辨率多光子顯微鏡,實現無創、實時、動態的生物組織觀測。
雙光子熒光顯微成像主要有以下優點:a.光損傷小:雙光子熒光顯微以可見光或近紅外光為激發光,對細胞和組織的光損傷小,適合長期研究;b.穿透力強:與紫外光、可見光或近紅外光相比,穿透力強,可用于生物樣品的深入研究;c.高分辨率:由于雙光子吸收截面很小P,熒光只能在焦平面很小的區域激發,雙光子吸收被限制在焦點λ左右的體積內;d.漂白區域很小,焦點外不發生漂白。E.高熒光收集率與共焦成像相比,雙光子成像不需要濾光片,提高了熒光收集率。采集效率的提高直接導致圖像對比度的提高。F.對探測光路要求低。由于激發光和發射熒光的波長差越來越大,加上自發三維濾波效應,多光子顯微鏡對光路采集系統的要求遠低于單光子共焦顯微鏡,光學系統也相對簡單。G.適用于多標簽復合測量許多染料熒光探針的多光子激發光譜比單光子激發光譜更寬,從而可以用單一波長的激發光同時激發多種染料,獲得同一生命現象的不同信息,便于相互比較和補充。
細胞在受到外界刺激時,隨著刺激時間的增長,即使刺激繼續存在,Ca2+熒光信號不但不會繼續增強,反而會減弱,直至恢復到未加刺激物時的水平。對于細胞受精過程中Ca2+熒光信號的變化情況,研究發現,配了在粘著過程中,Ca2+熒光信號未發生任何變化,而配子之間發生融合作用時,Ca2+熒光信號強度卻會出現一個不穩定的峰值,并可持續幾分鐘。這些現象,對研究受精發育的早期信號及Ca2+在卵細胞和受精卵的發育過程中的作用具有重要的意義。在其它一些生理過程如細胞分裂、胞吐作用等,Ca2+熒光信號強度也會發生很的變化。多光子顯微鏡,為材料科學研究和工業應用提供全新視角。
多束掃描技術可以同時對神經元組織的不同位置進行成像。該技術:對于兩個遠程成像位置(相距1-2mm以上),通常采用兩個**的路徑進行成像;對于相鄰區域,通常使用單個物鏡的多個光束進行成像。多光束掃描技術必須特別注意激發光束之間的串擾,這可以通過事后光源分離或時空復用來解決。事后光源分離法是指分離光束以消除串擾的算法;時空復用法是指同時使用多個激發光束,每個光束的脈沖在時間上被延遲,使不同光束激發的單個熒光信號可以暫時分離。引入的光束越多,可以成像的神經元越多,但多束會導致熒光衰減時間重疊增加,從而限制了分辨信號源的能力;并且復用對電子設備的工作速度要求很高;大量的光束也需要較高的激光功率來維持單束的信噪比,這樣容易導致組織損傷。多光子顯微鏡,實現無創、無標記的生物組織觀測方案。布魯克多光子顯微鏡Ultima Investigator
多光子顯微鏡,突破生物組織成像深度,洞察細胞間的奧秘。美國飛秒激光多光子顯微鏡成像精度
2020年,TonmoyChakraborty等人提出了加速2PM軸向掃描速度的方法[2]。在光學顯微鏡中,物鏡或樣品緩慢的軸向掃描速度限制了體成像的速度。近年來,通過使用遠程聚焦技術或電調諧透鏡(ETL)已經實現了快速軸向掃描。但遠程對焦時對反射鏡的機械驅動會限制軸向掃描速度,ETL會引入球差和高階像差,無法進行高分辨率成像。為了克服這些限制,該小組引入了一種新的光學設計,可以將橫向掃描轉換為無球面像差的軸向掃描,以實現高分辨率成像。有兩種方法可以實現這種設計。***個可以執行離散的軸向掃描,另一個可以執行連續的軸向掃描。如圖3a所示,特定裝置由兩個垂直臂組成,每個臂具有4F望遠鏡和物鏡。遠程聚焦臂由振鏡掃描鏡(GSM)和空氣物鏡(OBJ1)組成,另一個臂(稱為照明臂)由浸沒物鏡(OBJ2)組成。兩個臂對齊,使得GSM與兩個物鏡的后焦平面共軛。準直后的激光束經偏振分束器反射進入遠程聚焦臂,由GSM進行掃描,使OBJ1產生的激光焦點可以進行水平掃描。美國飛秒激光多光子顯微鏡成像精度