熱敏電阻測試時應注意以下幾點:(1)Rt是生產廠家在環境溫度為25℃時所測得的,所以用萬用表測量Rt時,亦應在環境溫度接近25℃時進行,以保證測試的可信度。(2)測量功率不得超過規定值,以免電流熱效應引起測量誤差。(3)注意正確操作。測試時,不要用手捏住熱敏電阻體,以防止人體溫度對測試產生影響。(4)注意不要使熱源與PTC熱敏電阻靠得過近或直接接觸熱敏電阻,以防止將其燙壞。熱敏電阻的理論研究和應用開發已取得了引人注目的成果.隨著高、精、尖科技的應用,對熱敏電阻的導電機理和應用的更深層次的探索,以及對性能優良的新材料的深入研究,將會取得迅速發展.在選擇PTC熱敏電阻時,需要考慮其額定功率、額定電壓和最大工作電流等參數。汕頭正溫度系數熱敏電阻哪家專業
半導體熱敏電阻材料介紹:這類材料有單晶半導體、多晶半導體、玻璃半導體、有機半導體以及金屬氧化物等。它們均具有非常大的電阻溫度系數和高的龜阻率,用其制成的傳感器的靈敏度也相當高。按電阻溫度系數也可分為負電阻溫度系數材料和正電阻溫度系數材料.在有限的溫度范圍內,負電阻溫度系數材料a可達-6*10-2/℃,正電阻溫度系數材料a可高達-60*10-2/℃以上。如飲酸鋇陶瓷就是一種理想的正電阻溫度系數的半導體材料。上述兩種材料均普遍用于溫度測量、溫度控制、溫度補瞬、開關電路、過載保護以及時間延遲等方面,如分別用子制作熱敏電阻溫度計、熱敏電阻開關和熱敏電阻溫度計、熱敏電阻開關和熱敏電阻延遲繼電錯等。蘇州烤箱熱敏電阻供應商由于PTC熱敏電阻的穩定性和可靠性高,因此在工業控制領域得到了普遍應用。
熱敏電阻的性能優劣,很大程度上取決于其制造材料的特性。用于制作熱敏電阻的半導體材料,具有獨特的電學和熱學性質。常見的半導體材料如錳、鈷、鎳等過渡金屬氧化物,這些材料的晶體結構中存在大量的缺陷和雜質能級。當溫度變化時,載流子能夠在這些能級間躍遷,從而明顯改變材料的電導率,體現為電阻值的變化。例如,在負溫度系數(NTC)熱敏電阻常用的錳氧化物中,溫度升高促使更多電子從價帶躍遷到導帶,增加了載流子數量,降低了電阻。正溫度系數(PTC)熱敏電阻的典型材料鋇鈦礦陶瓷,在居里點附近,晶體結構的變化導致載流子遷移率急劇下降,電阻值隨之飆升。這些材料對溫度變化的靈敏響應,賦予了熱敏電阻在溫度檢測領域的獨特優勢。
熱敏電阻的技術參數有哪些呢?標稱阻值Rc:一般指環境溫度為25℃時熱敏電阻器的實際電阻值。實際阻值RT:在一定的溫度條件下所測得的電阻值。材料常數:它是一個描述熱敏電阻材料物理特性的參數,也是熱靈敏度指標,B值越大,表示熱敏電阻器的靈敏度越高。應注意的是,在實際工作時,B值并非一個常數,而是隨溫度的升高略有增加。電阻溫度系數αT:它表示溫度變化1℃時的阻值變化率,單位為%/℃。額定工作電流IM:熱敏電阻器在工作狀態下規定的名義電流值。NTC熱敏電阻可以通過模擬信號輸出溫度讀數,方便與微控制器等數字設備接口。
熱敏電阻的檢測方法:檢測時,用萬用表歐姆檔(視標稱電阻值確定檔位,一般為R×1擋),具體可分兩步操作:首先常溫檢測(室內溫度接近25℃),用鱷魚夾代替表筆分別夾住PTC熱敏電阻的兩引腳測出其實際阻值,并與標稱阻值相對比,二者相差在±2Ω內即為正常。實際阻值若與標稱阻值相差過大,則說明其性能不良或已損壞。其次加溫檢測,在常溫測試正常的基礎上,即可進行第二步測試—加溫檢測,將一熱源(例如電烙鐵)靠近熱敏電阻對其加熱,觀察萬用表示數,此時如看到萬用示數隨溫度的升高而改變,這表明電阻值在逐漸改變(負溫度系數熱敏電阻器NTC阻值會變小,正溫度系數熱敏電阻器PTC阻值會變大),當阻值改變到一定數值時顯示數據會逐漸穩定,說明熱敏電阻正常,若阻值無變化,說明其性能變劣,不能繼續使用。熱敏電阻可以與其他電子元件如運算放大器、微控制器等組合使用,實現更復雜的溫度控制功能。揚州電磁爐熱敏電阻供應商
NTC熱敏電阻可以用來測量環境溫度或電子設備內部的熱點溫度。汕頭正溫度系數熱敏電阻哪家專業
環境溫度對高分子ptc熱敏電阻的影響:高分子ptc熱敏電阻是一種直熱式、階躍型熱敏電阻,其電阻變化過程與自身的發熱和散熱情況有關,因而其維持電流(ihold)、動作電流(itrip)及動作時間受環境溫度影響。當環境溫度和電流處于a區時,熱敏電阻發熱功率大于散熱功率而會動作;當環境溫度和電流處于b區時發熱功率小于散熱功率,高分子ptc熱敏電阻由于電阻可恢復,因而可以重復多次使用。電阻一般在十幾秒到幾十秒中即可恢復到初始值1.6倍左右的水平,此時熱敏電阻的維持電流已經恢復到額定值,可以再次使用了。面積和厚度較小的熱敏電阻恢復相對較快;而面積和厚度較大的熱敏電阻恢復相對較慢。汕頭正溫度系數熱敏電阻哪家專業