隨著經濟的發展,人類對于大自然的干擾和對環境的破壞愈發嚴重,無論是酸雨等氣候災害、亦或是全球氣候變暖、還是霧霾現象頻發,都嚴重的影響著人們的生存環境。各國科學家對環境監控都十分重視。2008年,正值北京奧運會舉辦之際,美國普林斯頓科研小組利用量子級聯激光器搭建了開路式氣體檢測系統,對北京進行了空氣質量評估。“HIPPO”項目(由美國國家科學基金會(NSF)和美國國家海洋和大氣局(NOAA)支持)和“CalNEX”項目(由美國加州空氣資源局(CARB)和NOAA支持)正在開展溫室氣體的相關研究工作。[2]工業監控在石油化工、金屬冶煉、礦山開采等行業生產過程中,通過檢測產生的相應氣體的濃度可以進行進程監控,也可以監控泄露危險氣體的濃度,以保障生產安全,已有技術采用μmQCL對工業燃燒排氣系統中產生的NO氣體進行實時檢測,并使用μm的脈沖QCL對物產生的氣體進行光學檢測。醫學應用有的疾病會造成人類呼出氣體成分的異常升高,通過對呼出氣體的種類和濃度進行準確的分析,可以對臨床診斷和提供有價值的參考,而且不必因為使用CT等儀器而引入過多的輻射。例如,患有糖尿病、肝臟和腎臟疾病的患者呼出的氣體中NH3濃度會出現異常。 利用多種形式的光譜學測量手段,開展地面探測、地基探測、機載探測和星載探測四種典型光學觀測.湖南制造QCL激光器供應商
大氣中CO2、CH4、N2O三大溫室氣體的特征吸收光譜主要位于近紅外和中紅外光波段,其中近紅外波段波長在-μm范圍,對應于氣體分子的“泛頻”吸收譜帶,而中紅外波段波長位于-25μm范圍,對應于氣體分子的“基頻”吸收譜帶,吸收強度要明顯高于近紅外波段,適用于濃度痕量氣體分子的高靈敏檢測。針對目前溫室氣體多目標場景監測需求,研究人員開展了不同形式的探測方法研究,主要包括地面探測、地基探測、機載探測和星載探測,綜合運用各種吸收光譜技術和儀器,通過掃描獲取溫室氣體紅外波段的特征吸收光譜,經過光電信號轉換、光譜信號采集、濃度算法解析、軟件數據處理等技術過程,能夠實現溫室氣體多組分高靈敏時空分辨觀測。 重慶NH3QCL激光器公司可調諧半導體激光器調制光譜技術具有非侵入式原位快速在線測量和遙測等的特有優勢。
在環境污染分子的監測分析中,典型的應用有、、。近紅外光譜的一個優點是壓力加寬不是一個很大的問題,因此可以在近大氣壓或開放光程工作。缺點是有許多分子在該譜區沒有吸收,雖然在測量復雜混合物時,這也許是一個優點。中紅外波段工作在3-13μm的“指紋”區,是氣體分子基帶吸收。這個波段分子吸收線的強度比近紅外波段要大幾個量級。如:CH4在,理論檢測下限可達;CO在,理論檢測可達。通常分子在這個波段的振動和轉動光譜譜線非常豐富密集,典型的光譜線寬約為2×10-3cm-1(~60MHz)。中紅外波段激光光譜技術目前主要受到激光光源的限制,但近幾年來,隨著紅外激光技術的發展和新型中紅外相干光源技術的發展,在中紅外波段進***體分子的超高靈敏檢測技術有了長足的進步。
相比較與其它激光器,量子級聯激光器的優點如下:1)中遠紅外和太赫茲波段出射;在QCL發明之前,半導體激光器的發射波長主要在可見光和近紅外波段,當我們需要使用中遠紅外和太赫茲波段的激光時,半導體激光器對此則有些無能為力,不同體系激光器激射波長范圍如圖3。QCL的發明,使得半導體激光器也能激射出中遠紅外和太赫茲波段的激光。如圖3.不同激光器發光范圍[15]2)寬波長范圍;QCL激射波長取決于子帶間能量差,可以通過設計量子阱層厚度來實現波長控制,所以量子級聯激光器的激射波長范圍極寬(約3-250μm),并且可以根據實際需求設計特定波長的激光輸出。3)體積小;QCL相比其它激光器如:一氧化碳激光器(激射波長為4-5μm)和二氧化碳激光器(激射波長為μm),具有體積小、重量輕的特點,其攜帶方便,便于系統化和集成化。4)單極型結構;傳統結構半導體激光器為雙極型,其出光原理依靠的是p-n結中導帶電子和價帶空穴復合所產生的受激輻射,而QCL全程只有電子參與,空穴并未參與輻射發光過程,所以量子級聯激光器為單極型激光器,且其出射的激光具有很好的單向偏振性。5)高的電子利用效率;因為QCL所獨特的級聯結構,電子在參與完子帶間躍遷發光后,并沒有湮滅。 QCL的光束質量好,可以利用光的反射來設計光學長程池從而增加系統的吸收光程,提高系統的靈敏度。
TDLAS能實現"原位、連續、實時測量",環境適應力強,易于設備的小型化。因此可以掙脫實驗室的束縛,在產業應用中大展拳腳。比如大氣環境在線監測、發動機效率檢測、汽車尾氣測量、工業過程氣體實時監測等等。TDLAS利用半導體激光器的波長調諧特性,可獲得被選定的待測氣體特征吸收峰的吸收光譜,從而對氣體定性或者定量的分析。每種氣體分子的吸收峰受其他氣體吸收干擾很小,所以也稱之為"分子的指紋峰"TDLAS技術簡單來說就是這些氣體"分子指紋"的識別系統,具有很強的選擇性。此外,TDLAS的檢測靈敏度也是較高的,不過檢出限能達到怎樣的量級,就和所用光源有著很大的關系。常見的污染氣體的"指紋峰"主要集中在4μm-10μm,基本是中紅外的天下,所以,作為中紅外激光光源的QCL,則可展現性能優勢。再加之高輸出功率,檢出限可達到ppb,甚至ppt級別。這比傳統的近紅外光源所能達到的水平,整整高出了3~6個量級。 QCL在高靈敏檢測方面具備天然的優勢,可能成為呼吸氣體分析技術領域瓶頸的可靠解決方案。湖南CO2QCL激光器
可調諧半導體激光吸收光譜(TDLAS)是一種 具有高分辨率、高靈敏度、快速檢測特點的氣體檢測 技術。湖南制造QCL激光器供應商
QCL激光器的基本結構包括FP-QCL、DFB-QCL和ECqcL。增益介質顯示為灰色,波長選擇機制為藍色,鍍膜面為橙色,輸出光束為紅色。1.簡單的結構是F-P腔激光器(FP-QCL)。在F-P結構中,切割面為激光提供反饋,有時也使用介質膜以優化輸出。2.第二種結構是在QC芯片上直接刻分布反饋光柵。這種結構(DFB-QCL)可以輸出較窄的光譜,但是輸出功率卻比FP-QCL結構低很多。通過大范圍的溫度調諧,DFB-QCL還可以提供有限的波長調諧(通過緩慢的溫度調諧獲得10~20cm-1的調諧范圍,或者通過快速注進電流加熱調諧獲得2~3cm-1的范圍)。3.第三種結構是將QC芯片和外腔結合起來,形成ECqcL。這種結構既可以提供窄光譜輸出,又可以在QC芯片整個增益帶寬上(數百cm-1)提供快調諧(速度超過10ms)。由于ECqcL結構使用低損耗元件,因此它可在便攜式電池供電的條件下高效運作。 湖南制造QCL激光器供應商