在基坑護坡工程中,懸臂式支護結構適用于一些基坑深度較淺且周邊場地開闊的情況。這種支護結構主要依靠嵌入基坑底部土體的部分來維持穩定,利用土體對支護結構的被動土壓力來抵抗基坑土體的側向壓力。通常采用鋼筋混凝土灌注樁、地下連續墻等作為支護墻體。施工時,先按照設計要求進行樁或墻的施工,確保其垂直度和深度符合標準。灌注樁施工時,要保證鋼筋籠的制作質量以及混凝土的澆筑密實度;地下連續墻則需控制好成槽的精度和泥漿護壁的效果。由于懸臂式支護結構沒有額外的內支撐或錨桿,其設計和施工對土體的性質依賴較大。對于土質較好、較穩定的場地,它能發揮出施工簡便、成本相對較低的優勢。但在軟土等較差地質條件下,可能需要增加支護結構的剛度和入土深度來保證穩定性。在施工過程中,要密切監測基坑邊坡的位移情況,一旦發現位移過大,需及時采取加固措施,如在坡頂卸載、坡腳堆載反壓等,以確保基坑護坡的安全。完善基坑護坡系統,提升整體防護能力。江蘇基坑護坡施工順序
在山區復雜地形進行基坑護坡施工,面臨地形起伏大、地質條件復雜等諸多難題,需要采用針對性的施工技術。首先,根據山區地形特點,合理規劃施工便道,確保施工材料和機械設備能夠順利運輸到施工現場。對于坡度較陡的區域,采用修筑擋土墻、設置護坡等措施,保證施工便道的穩定性。在基坑開挖前,對山區地質進行詳細勘察,查明巖石的種類、節理裂隙發育情況以及土層的分布和性質。對于巖石基坑,若巖石完整性較好,可采用爆破開挖結合噴射混凝土護坡的方式。在爆破施工時,嚴格控制爆破參數,采用微差爆破、預裂爆破等技術,減少爆破對周邊巖體的擾動。爆破后,及時對邊坡進行修整,清掉松動巖石,然后噴射混凝土,形成防護層。若巖石節理裂隙發育,穩定性差,則采用錨索支護,通過錨索將不穩定的巖石與深部穩定巖體錨固在一起。對于土層基坑,根據土層性質選擇合適的支護形式,如土釘墻、樁錨支護等。在施工過程中,注意山區的排水問題,在基坑周邊設置截水溝和排水溝,攔截地表水和排除基坑內積水,防止因雨水沖刷導致邊坡坍塌。同時,加強對山區基坑邊坡的監測,根據地形和地質條件,合理設置監測點,及時掌握邊坡的變形情況,確保基坑護坡在山區復雜地形的施工安全與質量。江蘇復合基坑護坡基坑護坡在保護施工人員安全方面發揮著重要作用,是工程施工的安全屏障。
深厚填土基坑由于填土厚度大、性質不均勻,給基坑護坡帶來較大挑戰。在這類基坑中,首先要對填土的性質進行詳細勘察,了解填土的成分、密實度、壓縮性等參數。對于填土較松散、強度較低的情況,可采用地基加固處理方法,如強夯法、灰土擠密樁法等,對填土進行加固,提高其承載能力與穩定性。在護坡結構選擇上,通常采用樁錨支護體系較為合適。灌注樁的長度要穿透填土進入下部穩定土層,以提供足夠的錨固力。錨桿或錨索的布置要根據填土的特性與基坑深度合理設計,確保能夠有效抵抗土體的側向壓力。同時,要做好基坑的排水工作,因為深厚填土的透水性往往較差,積水容易導致土體強度降低。在基坑周邊設置截水溝,攔截地表水,在基坑內設置排水溝與集水井,及時排除積水。此外,加強對基坑邊坡的監測,密切關注填土的變形情況,根據監測結果及時調整護坡措施,保障深厚填土基坑護坡的安全穩定。
優化基坑護坡的施工組織設計能夠提高施工效率、保障施工質量與安全。在施工部署方面,根據基坑的規模、形狀、地質條件以及周邊環境等因素,合理劃分施工區域,明確各區域的施工順序與施工方法。例如,對于大型基坑,采用分段、分層開挖與護坡施工的方式,每個施工段配備相應的施工人員與機械設備,確保施工有序進行。在資源配置上,根據施工進度計劃,合理安排施工人員、機械設備以及材料的投入。如根據土釘墻施工進度,確定鉆孔設備、注漿設備以及鋼筋、水泥等材料的進場時間與數量,避免資源閑置或短缺。在施工進度計劃制定上,采用網絡計劃技術,明確關鍵線路與關鍵工作,合理安排各工序的作業時間與搭接關系,對可能影響施工進度的因素進行分析并制定應對措施,如考慮天氣因素對混凝土澆筑施工的影響,預留一定的彈性時間。同時,優化施工平面布置,合理設置材料堆放區、機械設備停放區、臨時辦公區等,減少施工過程中的相互干擾,提高施工效率,通過施工組織設計的優化,保障基坑護坡工程高效、順利地進行。基坑護坡的施工要注重細節,每一個環節都關系到工程的質量和穩定性。
以某超深基坑工程為例,該基坑深度達 20m,周邊環境復雜,臨近既有建筑物與地下管線。在基坑護坡方面,采用了地下連續墻結合錨索支護的方案。地下連續墻作為主要的擋土結構,墻厚 800mm,深度為 28m,深入到穩定的基巖中,確保了基坑邊坡的穩定性。在地下連續墻施工過程中,嚴格控制成槽質量,采用銑槽機進行成槽作業,保證槽壁的垂直度與平整度,泥漿護壁效果良好,有效防止了槽壁坍塌。錨索設置了 3 道,錨索長度分別為 20m、22m、25m,通過張拉設備對錨索施加預應力,將地下連續墻與深部穩定巖體緊密錨固在一起。在施工過程中,加強對基坑邊坡與周邊建筑物的監測,監測數據顯示,基坑邊坡位移與周邊建筑物沉降均控制在設計允許范圍內。該案例表明,在超深基坑中,合理采用地下連續墻結合錨索支護的基坑護坡方案,能夠有效應對復雜的地質條件與周邊環境,保障基坑施工的安全與順利進行,為類似工程提供了寶貴的經驗借鑒。基坑護坡的設計要考慮到地震等自然災害的影響,提高其抗震能力。江蘇復合基坑護坡
科學規劃基坑護坡,保障工程順利進行。江蘇基坑護坡施工順序
當基坑護坡工程臨近既有建筑物時,保護既有建筑物的安全是重中之重。在施工前,對既有建筑物進行詳細的調查,包括建筑物的結構類型、基礎形式、建成年代以及現狀等,通過沉降觀測、裂縫觀測等手段掌握建筑物的初始狀態。在基坑護坡設計時,充分考慮既有建筑物基礎荷載的影響,合理確定支護結構的形式和參數,如增加錨桿、錨索的長度和抗拔力,采用剛度較大的支護結構,控制基坑變形在允許范圍內,避免對既有建筑物基礎產生過大影響。在施工過程中,加強對既有建筑物的監測,增加監測頻率,設置沉降觀測點、傾斜觀測點以及裂縫觀測點等,實時掌握建筑物的變形情況。一旦發現異常,立即停止施工,分析原因并采取相應的措施,如進行地基加固、調整施工方案等。同時,在基坑開挖與護坡施工過程中,要控制好施工順序和進度,避免對既有建筑物周邊土體產生過大擾動。還可以在基坑與既有建筑物之間設置隔離樁或采用土體加固等措施,減少基坑施工對既有建筑物的影響,保障既有建筑物在基坑施工期間的安全與穩定。江蘇基坑護坡施工順序