20世紀60年代末至70年代初,粉末高速鋼、粉末高溫合金相繼出現,促進了粉末鍛造及熱等靜壓技術的發展及在度零件上的應用。這一時期,金屬粉末燒結板的材料種類更加豐富,除了傳統的鋼鐵材料,各種合金粉末被廣泛應用于燒結板的制造。通過合理設計合金成分,能夠使燒結板獲得更優異的性能,如高溫合金粉末燒結板在航空航天領域展現出巨大優勢,可用于制造發動機部件等,滿足了航空航天等領域對材料耐高溫、度等性能的嚴苛要求。同時,在燒結工藝方面,熱壓燒結、放電等離子燒結(SPS)等新型燒結技術不斷涌現。熱壓燒結在燒結時施壓,能降低燒結溫度、縮短時間,獲得更高密度和性能的制品;放電等離子燒結通過脈沖電流產生放電等離子體和焦耳熱快速加熱燒結,可顆粒表面雜質,表面,升溫快、時間短且能抑制晶粒長大,用于制備納米材料等。這些新型燒結技術的應用,進一步提升了金屬粉末燒結板的性能,使其在更多領域得到應用,如電子信息領域中,一些具有特殊性能要求的電子元件開始采用金屬粉末燒結板制造。運用納米級金屬粉末,利用其高比表面積特性,提升燒結板的強度與韌性,性能更優。廣東金屬粉末燒結板貨源廠家
放電等離子燒結技術是在粉末顆粒間施加脈沖電流,利用放電產生的瞬間高溫和高壓實現粉末快速燒結的方法。SPS技術具有升溫速度快(可達100-1000℃/min)、燒結時間短(幾分鐘到幾十分鐘)、能有效抑制晶粒長大等優點,適用于制備高性能金屬粉末燒結板。在制備納米晶金屬燒結板時,SPS技術能夠在極短時間內使納米粉末顆粒快速燒結,同時保持納米晶結構。例如,利用SPS技術制備的納米晶銅燒結板,其硬度比傳統粗晶銅燒結板提高了2-3倍,同時保持了良好的導電性和延展性。在制備梯度功能材料燒結板方面,SPS技術也具有獨特優勢。通過控制燒結過程中的溫度、壓力和時間等參數,可以在燒結板中形成成分和結構連續變化的梯度層。例如,制備具有耐磨外層和韌性內層的金屬梯度燒結板,用于機械零件的表面強化。SPS技術能夠精確控制梯度層的厚度和成分變化,提高梯度功能材料的性能和可靠性。浙江金屬粉末燒結板的市場研發多元合金粉末,融合多種金屬優勢,讓燒結板具備更的綜合性能,適應復雜工況。
混合是將不同種類的金屬粉末或金屬粉末與添加劑按照一定比例充分混合均勻的過程,其目的是確保在后續的成型和燒結過程中,各種成分能夠均勻分布,從而使燒結板獲得一致的性能。混合工藝的好壞直接影響粉末的均勻性。常用的混合設備有V型混合機、雙錐混合機、三維運動混合機等。V型混合機由兩個不對稱的圓筒呈V型連接而成,在旋轉過程中,粉末在兩個圓筒內不斷翻滾、對流,從而實現混合。其結構簡單,混合效率較高,但對于一些流動性較差或易團聚的粉末,混合效果可能不理想。雙錐混合機的混合容器呈雙錐形,在旋轉時,粉末在容器內形成復雜的運動軌跡,包括軸向和徑向的混合,能夠較好地實現粉末的均勻混合,且對不同性質的粉末適應性較強。三維運動混合機則通過獨特的三維運動方式,使混合容器在三個方向上同時進行運動,粉末在容器內產生強烈的翻騰、擴散和剪切作用,混合效果更為理想,尤其適用于對混合均勻性要求極高的場合。
霧化法是將熔融的金屬液通過高壓氣體(如氮氣、氬氣)或高速水流的沖擊,使其分散成細小的液滴,這些液滴在飛行過程中迅速冷卻凝固,形成金屬粉末。根據霧化介質的不同,霧化法可分為氣體霧化法和水霧化法。氣體霧化法中,高壓氣體以高速從噴嘴噴出,沖擊從上方流下的金屬液流,將其破碎成微小液滴。由于氣體的冷卻速度相對較慢,使得液滴在凝固過程中有一定的時間進行內部原子的擴散和重組,因此氣體霧化法制備的粉末球形度高,流動性好,且內部組織均勻,雜質含量低。這種高質量的粉末適合用于制造高性能的金屬粉末燒結板,如航空航天領域的關鍵部件。然而,氣體霧化法設備復雜,成本較高,對氣體的純度和壓力控制要求嚴格。制備含金屬鹵化物的粉末,賦予燒結板特殊的光學與電學性能。
隨著納米技術和微粉制備技術的發展,納米與亞微米級金屬粉末在金屬粉末燒結板中的應用逐漸成為研究熱點。這些超細粉末具有極大的比表面積和高表面能,能夠改善燒結板的性能。在電子封裝領域,采用納米銀粉制備的燒結板,由于納米銀顆粒間的燒結驅動力大,在較低溫度下就能實現良好的燒結結合,形成高導電、高導熱的連接層。與傳統微米級銀粉燒結板相比,納米銀粉燒結板的電導率可提高 10% - 20%,熱導率提高 15% - 25%,有效解決了電子器件散熱和信號傳輸中的關鍵問題,滿足了電子設備小型化、高性能化對封裝材料的要求。開發含*量子點的金屬粉末,提升燒結板光電性能與催化活性。廣東金屬粉末燒結板貨源廠家
研制含納米多孔金屬結構的粉末,提高燒結板的比表面積與吸附能力。廣東金屬粉末燒結板貨源廠家
在現代,各種先進制造技術在金屬粉末燒結板領域得到廣泛應用。除了前面提到的 3D 打印技術和納米粉末冶金技術外,計算機模擬與仿真技術也發揮著重要作用。通過計算機模擬,可以在實際制造之前對粉末的流動、成型過程以及燒結過程中的溫度場、應力場等進行模擬分析,預測產品性能,優化工藝參數,減少實驗次數,降低研發成本和周期。例如,在設計新型航空發動機用金屬粉末燒結板時,利用計算機模擬技術可以提前評估不同工藝參數下燒結板的性能,從而確定比較好的制造工藝。廣東金屬粉末燒結板貨源廠家